有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问: (1)如果放牧16
问题描述:
有一片牧场,草每天都在匀速地生长(即草每天增长的量相等),如果放牧24头牛,则6天吃完牧草;如果放牧21头牛,则8天吃完牧草.设每头牛每天吃草的量是相等的,问:
(1)如果放牧16头牛,几天可以吃完牧草?
(2)要使牧草永远吃不完,至多放牧几头牛?
答
设牧场原有草量为a,每天生长的草量为b,每头牛每天吃草量为c,16头牛x天吃完草.
(1)由题意得:
a+6b=24×6c ① a+8b=21×8c ② a+bx=16cx ③
由②-①得 b=12c ④
由③-②得 (x-8)b=(16x-168)c ⑤
将④代入⑤得 (x-8)×12c=(16x-168)c,解得 x=18
(2)设至多放牧y头牛,牧草才永远吃不完,则有cy≤b,即每天吃的草不能多于生长的草,y≤
=12.b c
答:(1)如果放牧16头牛,18天可以吃完牧草;(2)要使牧草永远吃不完,至多放牧12头牛.