定义新运算:(a,b)⊗(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d)(a,b)*(c,d)=a2+c2-bd (1)求(1,2)*(3,-4)的值; (2)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q

问题描述:

定义新运算:(a,b)⊗(c,d)=(ac,bd),(a,b)⊕(c,d)=(a+c,b+d)(a,b)*(c,d)=a2+c2-bd
(1)求(1,2)*(3,-4)的值;
(2)已知(1,2)⊗(p,q)=(2,-4),分别求出p与q的值;
(3)在(2)的条件下,求(1,2)⊕(p,q)的结果;
(4)已知x2+2xy+y2=5,x2-2xy+y2=1,求(x,5)*(y,xy)的值.

(1)∵(a,b)*(c,d)=a2+c2-bd,
∴(1,2)*(3,-4)=12+32-2×(-4)
=1+9+8
=18;
(2)∵(a,b)⊗(c,d)=(ac,bd),
∴(1,2)⊗(p,q)=(1×p,2×q),
∵(1,2)⊗(p,q)=(2,-4),
∴p=2,2q=-4,
∴q=-2;
(3)∵q=-2,p=2,(a,b)⊕(c,d)=(a+c,b+d),
∴(1,2)⊕(p,q)
=(1,2)⊕(2,-2)
=(3,0);
(4)∵x2+2xy+y2=5,x2-2xy+y2=1,
∴x2+y2=3,xy=1,
∵(a,b)*(c,d)=a2+c2-bd,
∴(x,5)*(y,xy)
=x2+y2-5xy
=3-5
=-2.