如图,正方形ABCD的边长为2,M是BC的中点,将正方形折叠,使点A与点M重合,折痕为EF,求EF和AE的长
问题描述:
如图,正方形ABCD的边长为2,M是BC的中点,将正方形折叠,使点A与点M重合,折痕为EF,求EF和AE的长
答
设AM与EF的交点为O因为∠EAO=∠MAB∠AOE=∠ABM=90°所以△AOE相似于△ANM所以AE:AM=AO:AB因为AM=√5,AO=AM/2=√5/2所以AE=AM×AO÷AB=√5×√5/2÷2=5/4(即4分之5)过点F作AD的平行线交AB与点N则△ABM全等于RT△F...