梯形ABCD中,AB平行CD,对角线AC,BD交于O.设三角形AOB、三角形BOC、三角形COD、三角形DOA的面积分别为S1,S2,S3,S4.求证S1+S3>S4+S2

问题描述:

梯形ABCD中,AB平行CD,对角线AC,BD交于O.设三角形AOB、三角形BOC、三角形COD、三角形DOA的面积分别为S1,S2,S3,S4.求证S1+S3>S4+S2

过点C、A分别做到DB的垂线H、h,将OB、OD以a、b表示,则上下侧面积为ah/2+bH/2,左右侧面积为bh/2+aH/2.因为h/H=a/b(相似三角形),所以用H带换h可得左右侧面积为aH,上下侧为(a^2H+b^2H)/2b.因为a^2+b^2>=2ab,由于a不等...