在极坐标系下计算∫∫Dx√(^2+y^2)dxdy,其中D为x^2+y^2=1曲线与X轴,Y轴在第一象限围成的区域.

问题描述:

在极坐标系下计算∫∫Dx√(^2+y^2)dxdy,其中D为x^2+y^2=1曲线与X轴,Y轴在第一象限围成的区域.

∫∫x√(x²+y²)dxdy=∫dθ∫rcosθ*r*rdr (作极坐标变换)
=∫cosθdθ∫r³dr
=[(sinθ)│]*[(r^4/4)│]
=[sin(π/2)-sin(0)]*(1^4/4-0^4/4)
=1*(1/4)
=1/4.