1、已知三个集合E={x|x^2-3x+2=0}.F={x|x^2-ax+(a-1)=0},G={x|x^2-bx+2=0}.
问题描述:
1、已知三个集合E={x|x^2-3x+2=0}.F={x|x^2-ax+(a-1)=0},G={x|x^2-bx+2=0}.
问:同时满足F真包含于E,G包含于E的实数a,b是否存在?若存在,求出a,b所有值的集合;若不存在,说明理由.
2、空集={空集},空集真包含于{空集} (空集符号不会打)
请问:这两个种是对的还是错的?空集可以写在{ 空集不是已经有“集”的意思了吗?
3、若A={x|-2
答
1、首先,求出E集合来:解方程x^2-3x+2=0得x1=1,x2=2,故:E={1,2}.假设题目所说的情况存在,F真包含于E,则F=∅或{1}或{2}.而对方程x^2-ax+(a-1)=0解得:x=1或x=a-1,则a-1只能为1,即a-1=1,a=2.其次,对于G,G包含于E...