已知正四棱锥P-ABCD棱长都等于a,侧棱PB,PD的中点分别为M,N,则截面AMN与底面ABCD所成锐二面角的正切值为( ) A.33 B.12 C.1 D.2
问题描述:
已知正四棱锥P-ABCD棱长都等于a,侧棱PB,PD的中点分别为M,N,则截面AMN与底面ABCD所成锐二面角的正切值为( )
A.
3
3
B.
1 2
C. 1
D.
2
答
如图,正四棱锥P-ABCD中,O为正方形ABCD的两对角线的交点,则PO⊥面ABCD,PO交MN于E,则PE=EO,
又BD⊥AC,∴BD⊥面PAC,
过A作直线l∥BD,则l⊥EA,l⊥AO,
∴∠EAO为所求二面角的平面角.
又EO=
AO=1 2
a,AO=
2
4
a,
2
2
∴tan∠EAO=
.1 2
故选:B.