证明行列式a^2 (a+1)^2 (a+2)^2 (a+3)^2b^2 (b+1)^2 (b+2)^2 (b+3)^2c^2 (c+1)^2 (c+2)^2 (c+3)^2 =0d^2 (d+1)^2 (d+2)^2 (d+3)^2

问题描述:

证明行列式
a^2 (a+1)^2 (a+2)^2 (a+3)^2
b^2 (b+1)^2 (b+2)^2 (b+3)^2
c^2 (c+1)^2 (c+2)^2 (c+3)^2 =0
d^2 (d+1)^2 (d+2)^2 (d+3)^2