实对称矩阵对角化问题设A为3介实对称矩阵,可知存在正交阵P,使得P'-1AP=B,B为其特征值构成的对角矩阵,为什么求出了A的特征向量再施密特正交化最后还要单位话,个人感觉正交化就足够了,为什么还最后还要单位话就是说由特征向量构成的矩阵不是正交矩阵,必须单位化后才是吧!
问题描述:
实对称矩阵对角化问题
设A为3介实对称矩阵,可知存在正交阵P,使得P'-1AP=B,B为其特征值构成的对角矩阵,为什么求出了A的特征向量再施密特正交化最后还要单位话,个人感觉正交化就足够了,为什么还最后还要单位话
就是说由特征向量构成的矩阵不是正交矩阵,必须单位化后才是吧!
答
必须单位化!
因为正交矩阵P是由A的特征向量构成的
而矩阵P是正交矩阵的充分必要条件是它的列(行)向量组是标准正交向量组,即两两正交且长度为1.
所以必须单位化.
不对.单位化后得到的P才是正交矩阵.
PS.用追问方式能使回答者快速收到你的疑问