【曲面积分问题】求曲面积分fffΣ(x+y+z)dS,其中Σ为上半球面z=根号(a^2-x^2-y^2)
问题描述:
【曲面积分问题】求曲面积分fffΣ(x+y+z)dS,其中Σ为上半球面z=根号(a^2-x^2-y^2)
求曲面积分fff(x+y+z)dS,其中Σ为上半球面z=根号(a^2-x^2-y^2)
Σ
答
首先积分曲面关于xoz,yoz平面都是对称的,而被积函数(x+y)分别是关于x,y的奇函数,所以∫∫(x+y)=0,原积分=∫∫zds,而(z'x)^2+(z'y)^2+1=x^2/z^2+y^2/z^2+1=a^2/z^2,所以积分=∫∫azdxdy/z=a∫∫dxdy=πa^3