已知函数fx=sinx+cosx[x∈R] (1)求函数f(x)的最大值及取得最大值的自变x

问题描述:

已知函数fx=sinx+cosx[x∈R] (1)求函数f(x)的最大值及取得最大值的自变x
的集合,
(2)说明f(x)的图像可由y=sinx的图像经过怎样的变化得到.

f(x)=√2[(√2/2)sinx+(√2/2)cosx]=√2[sinxcos(π/4)+cosxsin(π/4)]=√2sin(x+π/4)
1、最大值是√2,此时x+π/4=2kπ+π/2,即取得最大值是取值集合是:{x|x=2kπ+π/4,k∈Z}
2、这个函数可以由y=sinx ====>>>>> 向左平移π/4个单位【得到y=sin(x+π/4)】,再将所得到的函数图像上所有点的横坐标不变,纵坐标增加到原来的√2倍,得:y=√2sin(x+π/4),即:y=sinx+cosx