1-2sinxcosx/cos2x-sin2x=1-tanx/1+tanx

问题描述:

1-2sinxcosx/cos2x-sin2x=1-tanx/1+tanx

b(n+1)/bn
=-2a(n+1)÷(-2an)
=a(n+1)/an
=q
选A
(-2)△5即A=-2,B=5
所以(-2)△5=-2×5+5-(-2)
=-10+5+2
=-3

左边=(sin²x+cos²x-2sinxcosx)/(cos²x-sin²x)=(cosx-sinx)²/(cosx+sinx)(cosx-sinx)=(cosx-sinx)/(cosx+sinx)上下除以cosx且 sinx/cosx=tanx所以左边=(1-tanx)/(1+tanx)=右边命题得证...