求下列不定积分 ∫(arctan e^x)/(e^2x)dx(-1/2)[e^-(2x)*arctane^x+arctane^x+e^(-x)]+C我的解法是:原式= ∫(arctan e^x)/(e^x)d(1/e^x)令1/e^x=t = ∫(arctan 1/t)/t dt= (-1/2) ∫(arctan 1/t) d(t^2)= (-1/2) [(t^2)(arctan 1/t) - ∫(t^2)d(arctan 1/t)]= (-1/2) [(t^2)(arctan 1/t) + ∫(t^2)/(1+t^2)dt]= (-1/2) [(t^2)(arctan 1/t) + ∫(t^2+1-1)/(1+t^2)dt= (-1/2) {(t^2)(arctan 1/t) +∫1-[1/(1+t^2)]dt}= (-1/2)[e^-(2x)*arctane^x-arctane^(-x)+e^(-x)]+C不知道自己哪步算错了,和答案总是差一个数啊,是第一步换元有问题吗?

问题描述:

求下列不定积分 ∫(arctan e^x)/(e^2x)dx
(-1/2)[e^-(2x)*arctane^x+arctane^x+e^(-x)]+C
我的解法是:原式= ∫(arctan e^x)/(e^x)d(1/e^x)
令1/e^x=t = ∫(arctan 1/t)/t dt
= (-1/2) ∫(arctan 1/t) d(t^2)
= (-1/2) [(t^2)(arctan 1/t) - ∫(t^2)d(arctan 1/t)]
= (-1/2) [(t^2)(arctan 1/t) + ∫(t^2)/(1+t^2)dt]
= (-1/2) [(t^2)(arctan 1/t) + ∫(t^2+1-1)/(1+t^2)dt
= (-1/2) {(t^2)(arctan 1/t) +∫1-[1/(1+t^2)]dt}
= (-1/2)[e^-(2x)*arctane^x-arctane^(-x)+e^(-x)]+C
不知道自己哪步算错了,和答案总是差一个数啊,是第一步换元有问题吗?