高一数学问题(解题过程)

问题描述:

高一数学问题(解题过程)
在三角形ABC中,角A最大,角C最小,且角A等于2倍的角C,边a加边c等于2倍的边b,求此三角形的三边之比.

a+c=2b
∠A=2∠C
∠B=180-∠A-∠C=180-3∠C
a/sinA=c/sinC=b/sinB
c/sinC=b/sin(180-3∠C)=a/sin2C
a+c=2b
a/b+c/b=2
c/sinC=b/sin3C=a/sin2C
a/b=sin2C/sin3C
c/b=sinC/sin3C
a/b+c/b=(sin2C+sinC)/sin3C=2
sinA+sinC=2sinB
sinA+sinC=sin2C+sinC=2sin(3C/2)cos(C/2)
2sinB=2sin(180-3C)=2sin(3C)=4sin(3C/2)cos(3C/2)
所以,cos(C/2)=2cos(3C/2)=2cos(C/2)[-3+4(cos(C/2))^2]
[cos(C/2)]^2=7/8,cos(C/2)=(√14)/4,(注:角C小于60度,故负值舍去.)
[sin(C/2)]^2=1/8,sin(C/2)=(√2)/4,(注:角C小于60度,故负值舍去.)
sinC=2sin(C/2)cos(C/2)=(√7)/4,cosC=3/4
sin2C=2sinCcosC=(3√7)/8
sin3C=sinC[3-4(sinC)^2]=(5√7)/16
a/b=sinA/sinB=sin2C/sin3C=6/5
同理,a/c=3/2,b/c=5/4
所以,a:b:c=6:5:4