最小二乘法怎么来的,推导怎么推导的?

问题描述:

最小二乘法怎么来的,推导怎么推导的?
为什么离差的平方和最小为一个判定依据,不是离差的和?我就是想知道为什么来的

最小二乘法原理
在我们研究两个变量(x,y)之间的相互关系时,通常可以得到一系列成对的数据(x1,y1、x2,y2...xm ,ym);将这些数据描绘在x -y直角坐标系中(如图1),若发现这些点在一条直线附近,可以令这条直线方程如(式1-1).
Y计= a0 + a1 X (式1-1)
其中:a0、a1 是任意实数
为建立这直线方程就要确定a0和a1,应用《最小二乘法原理》,将实测值Yi与利用(式1-1)计算值(Y计=a0+a1X)的离差(Yi-Y计)的平方和〔∑(Yi - Y计)2〕最小为“优化判据”.
令:φ = ∑(Yi - Y计)2 (式1-2)
把(式1-1)代入(式1-2)中得:
φ = ∑(Yi - a0 - a1 Xi)2 (式1-3)
当∑(Yi-Y计)平方最小时,可用函数 φ 对a0、a1求偏导数,令这两个偏导数等于零.
(式1-4)
(式1-5)
亦即:
m a0 + (∑Xi ) a1 = ∑Yi (式1-6)
(∑Xi ) a0 + (∑Xi2 ) a1 = ∑(Xi,Yi) (式1-7)
得到的两个关于a0、 a1为未知数的两个方程组,解这两个方程组得出:
a0 = (∑Yi) / m - a1(∑Xi) / m (式1-8)
a1 = [n∑Xi Yi - (∑Xi ∑Yi)] / [n∑Xi2 - (∑Xi)2 )] (式1-9)
这时把a0、a1代入(式1-1)中,此时的(式1-1)就是我们回归的元线性方程即:数学模型.
在回归过程中,回归的关联式是不可能全部通过每个回归数据点(x1,y1、 x2,y2...xm,ym),为了判断关联式的好坏,可借助相关系数“R”,统计量“F”,剩余标准偏差“S”进行判断;“R”越趋近于 1 越好;“F”的绝对值越大越好;“S”越趋近于 0 越好.
R = [∑XiYi - m (∑Xi / m)(∑Yi / m)]/ SQR{[∑Xi2 - m (∑Xi / m)2][∑Yi2 - m (∑Yi / m)2]} (式1-10) *
很简单,离差的平方和具有具体的距离的意义.离差的和在总体上没有可以表征线性关系程度的能力