什么是数列的不动点法
问题描述:
什么是数列的不动点法
答
只能解这一类题,不过有的时候不一定要用不动点法,特殊的时候可以取倒数
比如a(n+1)=an/(2an+1),a1=1,an=?
取倒数1/a(n+1)=(an+1)/an=1+1/an,所以数列{1/an}是以公差为1的等差数列
1/an=1+(n-1)=n,an=1/n
可以用的情况,我随便举一个题
a(n+1)=(an+3)/(an-1),a1=1,an=?
a(n+1)+x=(an+3)/(an-1)+x=[an+3+x(an-1)]/(an-1)=[(x+1)an+(3-x)]/(an-1)
=(x+1)[an+(3-x)/(x+1)]/(an-1)
令x=(3-x)/(x+1),解得x=-3或x=1.所以
a(n+1)-3=-2(an-3)/(an-1)
a(n+1)+1=2(an+1)/(an-1)
两式相除
[a(n+1)-3]/[a(n+1)+1]=-(an-3)/(an+1)=(-1)^n(a1-3)/(a1+1)=(-1)^(n+1)
再求出a(n+1)近而得到an,这个我不算了,解法就是这样
如果刚才的那种方程有等根
那么就能构造出一个等差数列,直接求就行