计算极限lim(x→∞)[x-(x^2)ln(1+1/x)]

问题描述:

计算极限lim(x→∞)[x-(x^2)ln(1+1/x)]

lim(x→∞)[x-(x^2)ln(1+1/x)] (t=1/x,t→0)
=lim(t→0)[1/t-ln(1+t)/t^2]
=lim(t→0)[t-ln(1+t)]/t^2
=lim(t→0)[1-1/(1+t)]/(2t)
=lim(t→0)t/[(1+t)(2t)]
=1/2