化简x^2-yz/[x^2-(y+z)x+yz]+y^2-zx/[y^2-(z+x)y+zx]+z^2-xy/[z^2-(x+y)z+xy]

问题描述:

化简x^2-yz/[x^2-(y+z)x+yz]+y^2-zx/[y^2-(z+x)y+zx]+z^2-xy/[z^2-(x+y)z+xy]

(x^2-yz)/[x^2-(y+z)x+yz]+(y^2-zx)/[y^2-(z+x)y+zx]+(z^2-xy)/[z^2-(x+y)z+xy]=(yz-x^2)/(x-y)(z-x)+(zx-y^2)/(y-z)(x-y)]+(xy-z^2)/(z-x)(y-z)=…………/(x-y)(y-z)(z-x)=0.