某射手每次射击命中目标的概率都是0.8,现连续向一目标射击,直到第一击中为止,求“射击次数”X的数学...

问题描述:

某射手每次射击命中目标的概率都是0.8,现连续向一目标射击,直到第一击中为止,求“射击次数”X的数学...
某射手每次射击命中目标的概率都是0.8,现连续向一目标射击,直到第一击中为止,求“射击次数”X的数学期望与方差.(求过程和结果,跪谢)

这个属于几何分布
q=0.8
第N次射击才命中的概率为(0.2)^(N-1)*0.8
均值和方差需要用到高数中的无穷级数来解决
这里我只告诉你答案  E(n) = 1/p,var(n) = (1-p)/p^2;