如图,矩形ABCD中,AB=3,BC=1,EF∥BC且AE=2EB,G为BC中点,K为△ADF的外心,沿EF将矩形折成一个120°的二面角A-EF-B,则此时KG的长是_.
问题描述:
如图,矩形ABCD中,AB=3,BC=1,EF∥BC且AE=2EB,G为BC中点,K为△ADF的外心,沿EF将矩形折成一个120°的二面角A-EF-B,则此时KG的长是______.
答
由题设知,△ADF为直角三角形,K为△ADF的外心,则K为AF的中点,取EF中点H,连接KH、HG、KG.
∵K、H分别为FA,FE的中点,∴KH∥AE.
又AE⊥EF,∴KH⊥EF.
又GH⊥EF,
∴∠KHG即为二面角A-EF-B的平面角,∴∠KHG=120°.
在△KHG中,KH=
AE=1,GH=1,1 2
∴KG=
=
1+1−2×1×1×cos120°
3
故答案为:
.
3