设函数f(x)=a^X-a^(-X) (a>0且a≠1)是奇函数.若f(1)=8/3 ,且函数g(x)=a^2x+a^-2X-2mf(x)在
问题描述:
设函数f(x)=a^X-a^(-X) (a>0且a≠1)是奇函数.若f(1)=8/3 ,且函数g(x)=a^2x+a^-2X-2mf(x)在
设函数f(x)=a^X-a^(-X) (a>0且a≠1)是奇函数.
若f(1)=8/3 ,且函数g(x)=a^2x+a^-2X-2mf(x)在[1,+无穷)上的最小值为-2,求m的值.
答
f(1)=a-1/a=8/3,则a=3或a=-1/3,由条件a>0且a≠1知a=3
g(x)=a^2x+a^-2X-2mf(x)=3^2x+3^-2X-2m(3^x-3^-X)
令y=3^x,y在[3,+无穷),则g(x)=y^2 +y^-2-2m(y+y^-1)=(y^2 -2+y^-2)my-2m(y-y^-1)+2=(y-y^-1)^2-2m(y-y^-1)+2
令z=y-y^-1,z在[8/3,+无穷),则g(x)=z^2-2mz+2=z^2-2mz+m^2-m^2+2=(z-m)^2-m^2+2
若m〉=8/3则g(x)最小值为-m^2+2=-2,求得m=2不符合条件
若m