已知x1+x2=3,x1x2=1,求(1)x1分之1+x2分之1的值.
问题描述:
已知x1+x2=3,x1x2=1,求(1)x1分之1+x2分之1的值.
(2)x1分之x2+x2分之x1的值.
(3)求(x2+1)/(x1+1)+(x1+1)/(x2+1)的值
答
(1) 1/x1+1/x2=(x1+x2)/(x1x2)=3/1=3(2) x2/x1+x1/x2=(x1^2+x2^2)/(x1x2)=x1^2+x2^2+2x1x2-2x1x2=(x1+x2)^2-2=9-2=7(3) (x2+1)/(x1+1)+(x1+1)/(x2+1)=[(x2+1)^2+(x1+1)^2]/(x1x2+x1+x2+1)=[x1^2+x2^2+2(x1+x2)+2]/(1...