设函数F(X)=(SINWX+COSWX)^+2COS^WX(W>0)的最小周期为2兀/3,求W的值
问题描述:
设函数F(X)=(SINWX+COSWX)^+2COS^WX(W>0)的最小周期为2兀/3,求W的值
答
f(x)=(sinwx+coswx)²+2cos²wx
=1+2sinwxcoswx+cos2wx+1
=sin2wx+cos2wx+2
=√2sin(2wx+π/4)+2
因为2π/2w=2π/3,所以w=3/2请解释一下步骤,谢谢f(x)=(sinwx+coswx)²+2cos²wx=1+2sinwxcoswx+cos2wx+1…………sin2x=2sinxcosxcos2x=2cos²x-1=sin2wx+cos2wx+2……………………√2(√2/2sin2wx+√2cos2wx)√2/2=sinπ/4=cosπ/4=√2sin(2wx+π/4)+2因为2π/2w=2π/3,所以w=3/2 …………T=2π/2w