三角形abc中 b平方sin平方C+c平方sin平方B=2bcsonBcosC 三角形的形状

问题描述:

三角形abc中 b平方sin平方C+c平方sin平方B=2bcsonBcosC 三角形的形状

根据正弦定理,原式可化为sin^2Bsin^2C+sin^2Csin^2B=2sinBsinCcosBcosC
2sin^2Csin^2B=2sinBsinCcosBcosC
sinBsinC=cosBcosC
cosBcosC-sinBsinC=0
cos(B+C)=0
B+C=90度,所以A=90度
所以是直角三角形
【数学之美】团队很高兴为您解决问题!
有不明白的可以追问我哟!
如果觉得答案可以,请点击下面的【选为满意回答】按钮!
还有什么有点小困惑的,可以求助我哦,