已知f(x)=cos平方x+根号3sinxcosx+a,(x∈R,a∈R,a是常数),且f(π/6)=2.

问题描述:

已知f(x)=cos平方x+根号3sinxcosx+a,(x∈R,a∈R,a是常数),且f(π/6)=2.
(1)求a的值
(2)求使f(x)≥3/2的x的取值集合
(3)当x∈[0,π]时,求函数y=f(x)的单调递增区间...
回答完整还有额外财富值哦!

(1)f(x)=cos²x+根号3sinxcosx+a,且f(π/6)=2,
则cos²(π/6)+根号3sin(π/6)cos(π/6)+a=2,
3/4+√3*(1/2)*(√3/2)+a=2,
∴a=1/2.
(2)
f(x)=cos平方x+根号3sinxcosx+1/2
=(1+cos2x)/2+√3/2*sin2x+1/2
=√3/2*sin2x+ cos2x/2+1
=sin(2x+π/6)+1
f(x)≥3/2,即sin(2x+π/6)+1≥3/2,
sin(2x+π/6)≥1/2,
2kπ+π/6≤2x+π/6≤2kπ+5π/6,k∈Z,
kπ≤x≤kπ+π/3,k∈Z,
所以x的取值集合是{x| kπ≤x≤kπ+π/3,k∈Z }.
(3)
f(x)= sin(2x+π/6)+1,
2kπ-π/2≤2x+π/6≤2kπ+π/2,k∈Z,
kπ-π/3≤x≤kπ+π/6,k∈Z,
这是函数的单调递增区间,
当x∈[0,π]时,令k=0,1可得:
x∈[0,π/6], [2π/3,π]
∴当x∈[0,π]时,
函数y=f(x)的单调递增区间是[0,π/6], [2π/3,π].第二小题的2kπ+π/6≤2x+π/6≤2kπ+5π/6,k∈Z,是什么意思当正弦值≥1/2时,角的范围就是2kπ+π/6≤x≤2kπ+5π/6. 这里sin(2x+π/6)≥1/2,所以有2kπ+π/6≤2x+π/6≤2kπ+5π/6,k∈Z,第三小题 当x∈[0,π]时,令k=0,1可得:x∈[0,π/6], [2π/3,π]…………………………为什么k=0,1???因为x∈[0,π],只有k=0,1时,kπ-π/3≤x≤kπ+π/6才能落入已知区间∈[0,π],k取其它值时,超出了[0,π]的范围。