有一系列等式: 1×2×3×4+1=52=(12+3×1+1)2 2×3×4×5+1=112=(22+3×2+1)2 3×4×5×6+1=192=(32+3×3+1)2 4×5×6×7+1=292=(42+3×4+1)2 … (1)根据你的
问题描述:
有一系列等式:
1×2×3×4+1=52=(12+3×1+1)2
2×3×4×5+1=112=(22+3×2+1)2
3×4×5×6+1=192=(32+3×3+1)2
4×5×6×7+1=292=(42+3×4+1)2
…
(1)根据你的观察、归纳、发现的规律,写出8×9×10×11+1的结果______
(2)试猜想n(n+1)(n+2)(n+3)+1是哪一个数的平方,并予以证明.
答
(1)根据观察、归纳、发现的规律,得到8×9×10×11+1=(82+3×8+1)2=892;故答案为:892;(2)依此类推:n(n+1)(n+2)(n+3)+1=(n2+3n+1)2,理由如下:等式左边=(n2+3n)(n2+3n+2)+1=n4+6n3+9n2+2n2+6n...