在直二面角,D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.(2):求二面角B-AC-E的正切值 答案;根号二(3):求点D到平面ACE的距离 三分之二倍根号三

问题描述:

在直二面角,D-AB-E中,四边形ABCD是边长为2的正方形,AE=EB,F为CE上的点,且BF⊥平面ACE.
(2):求二面角B-AC-E的正切值 答案;根号二
(3):求点D到平面ACE的距离 三分之二倍根号三

(2)连结BD交AC于G,连结FG,
∵正方形ABCD边长为2,
∴BG⊥AC,BG=.根号2
∵BF⊥平面ACE,
由三垂线定理的逆定理得FG⊥AC,
∴∠BGF是二面角B-AC-E的平面角.
由(1)AE⊥平面BCE,
又∵AE=EB,
∴在等腰直角三角形AEB中,BE=.根号2
又∵直角△BCE中,根号BE方+BC方=根号6,BF=,3分之2倍根号2
∴直角△BFG中,sin∠BGF=.3分之根号6
∴二面角B-AC-E等于arcsin3分之根号6