sn=1/(1*2)+1/(2*3)+1/(3*4)+……+1/(n(n+1))怎么解?
问题描述:
sn=1/(1*2)+1/(2*3)+1/(3*4)+……+1/(n(n+1))怎么解?
答
根据:1/n(n+1)=1/n-1/(n+1)1/1*2+1/2*3+1/3*4+.1/n(n+1)=1/1-1/2+1/2-1/3+1/3-1/4+.+1/(n-1)-1/n+1/n-1/(n+1)=1-1/(n+1)=n/(n+1)所以sn=1/(1*2)+1/(2*3)+1/(3*4)+……+1/(n(n+1))=n/(n+1)