设函数f(x)在负无穷到正无穷内连续,且F(x)=∫(0到x)(x-2t)f(t)dt,证明若fx为偶函数,则Fx也是偶函数

问题描述:

设函数f(x)在负无穷到正无穷内连续,且F(x)=∫(0到x)(x-2t)f(t)dt,证明若fx为偶函数,则Fx也是偶函数

那一步令u=-t。所以上下限都加负号