已知cos(75+α)=1/3,若a是第三象限角求cos(105-a)+sin(255+a)-tan(a-105)

问题描述:

已知cos(75+α)=1/3,若a是第三象限角求cos(105-a)+sin(255+a)-tan(a-105)

若α是第三象限角,有:
180°+k*360°则255°+k*360°又cos(75°+α)=1/3>0
可知75°+α是第四象限角
则sin(75°+α)所以由sin²(75°+α)+cos²(75°+α)=1易得:
sin(75°+α)=-2√2/3,tan(75°+α)=sin(75°+α)/cos(75°+α)=-2√2
所以:cos(105°-α)+sin(255°+α)-tan(α-105°)
=cos[180°-(75°+α)]+sin[180°+(75°+α)]-tan[(α+75°)-180°]
=-cos(75°+α)-sin(75°+α)-tan(α+75°)
=-(1/3 -2√2/3 -2√2)
=(8√2 -1)/3