求函数f(x,y)=x的平方+y的平方-xy 在区域x的平方+y的平方 ≤4 上的最大值与最小值

问题描述:

求函数f(x,y)=x的平方+y的平方-xy 在区域x的平方+y的平方 ≤4 上的最大值与最小值

{x=2tcosθ
{y=2tsinθ
(0≤t≤1)(这是圆面的所有点的参数方程)
f(x,y)=4t²-4t²sinθcosθ
=4t²-2t²sin2θ
-2t²≤-2t²sin2θ≤2t²
2t²≤4t²-2t²sin2θ≤6t²
f(max)=6
f(min)=0

f(x,y)=x²+y²-xy设:f1(x,y)=x²+y² ,f2(x,y)=x²+y²-2xy=(x-y)²则:f=(f1+f2)/2画图可知:f1是个抛物面,f2是顶点在f1上的对勾线f1最大值是4,f2最大值是当x,y为±√2时f2=(2√2)...