在第36页第11题
问题描述:
在第36页第11题
如图,AC=BC,AC⊥BC,AE⊥CF,BF⊥CF,C,E,F分别为垂足,且∠BCF=∠ABF,CF交AB于点D
(1)判断△BCF与△CAE是否全等?并说明理由.
(2)判断△ADC是不是等腰三角形?并说明理由.
答
1.两个都为直角三角形 ,
∠ACB=90°=∠CBF+∠ACE
∠ACE+∠CAE=90°.
所以∠CBF=∠CAE 又 ZC=CB 有两个都是直角三角形
所以△BCF≌△CAE
2.是的
90°=∠FBD+∠BDF=∠FBD+∠EDA=∠BCF+∠EDA
∠BCF+∠ACD=90°
所以∠ACD=∠ADE所以为等腰三角形