设x与y相互独立,且均服从正态分布n(μ,σ^2),设u=ax+by,v=ax-by,且ab不等于0,试求u和v的相关系数ρ(x>y)由x与y相互独立,有cov(x,y)=0,故D(u)=D(ax+by)=a^2Dx+b^2Dy=(a^2+b^2)σ^2 D(v)=D(ax-by)=a^2Dx+b^2Dy=(a^2+b^2)σ^2,cov(u,v)=cov(ax+by,ax-by)=a^2Dx-b^2Dy=(a^2-b^2)σ^2 所以ρuv=(cov(u,v))/(根号下Du*根号下Dv)=(ac*根号下Dx*根号下Dy*ρxy)/(绝对值a*根号下Dx*绝对值c*根号下Dy)=-ρxy(accov(u,v)=cov(ax+by,ax-by)=a^2Dx-b^2Dy=(a^2-b^2)σ^2 用的是哪个公式?

问题描述:

设x与y相互独立,且均服从正态分布n(μ,σ^2),设u=ax+by,v=ax-by,且ab不等于0,试求u和v的相关系数ρ(x>y)
由x与y相互独立,有cov(x,y)=0,故D(u)=D(ax+by)=a^2Dx+b^2Dy=(a^2+b^2)σ^2 D(v)=D(ax-by)=a^2Dx+b^2Dy=(a^2+b^2)σ^2,cov(u,v)=cov(ax+by,ax-by)=a^2Dx-b^2Dy=(a^2-b^2)σ^2
所以ρuv=(cov(u,v))/(根号下Du*根号下Dv)=(ac*根号下Dx*根号下Dy*ρxy)/(绝对值a*根号下Dx*绝对值c*根号下Dy)=-ρxy(ac
cov(u,v)=cov(ax+by,ax-by)=a^2Dx-b^2Dy=(a^2-b^2)σ^2 用的是哪个公式?