已知x属于(0,π/2),tanx=1/2,求tan2x和sin(2x+π/3)的值
问题描述:
已知x属于(0,π/2),tanx=1/2,求tan2x和sin(2x+π/3)的值
答
tan2x=2tanx/(1-tanx^2)=4/3tan2x=4/3=sin2x/cos2xsin2x^2+cos2x^2=1x属于(0,π/2) 2x属于(0,π)tan2x>0sin2x=4/5cos2x=3/5sin(2x+π/3)=sin2xcosπ/3+cos2x sinπ/3=(4+3√3)/10