设f(x)在x=0处连续,且x趋近于0时f(x)/x极限存在,证明f(x)在x=0处连续可导

问题描述:

设f(x)在x=0处连续,且x趋近于0时f(x)/x极限存在,证明f(x)在x=0处连续可导

limf(x)/x存在,分母-->0,故limf(x)=0,f(x)在x=0连续,limf(x)=f(0)=0
f'(0)=lim[f(x)-f(0)]/[x-0]存在,所以f(x)在x=0连续且可导