我知道 N=1 成立 假设N=K 成立 再证N=K+1 但是如果N=K成立那N=K+1不也成立么?这不是自己骗自己?它到底是怎么样把复杂的数列问题弄简化的啊?原理是什么?

问题描述:

我知道 N=1 成立 假设N=K 成立 再证N=K+1 但是如果N=K成立那N=K+1不也成立么?这不是自己骗自己?它到底是怎么样把复杂的数列问题弄简化的啊?原理是什么?

N=1时成立,你可以通过验证来说明,但是,你不能挨个验证2、3、4...K、K+1
那么怎么办呢?有了,找个递推的方法递推下去不就成了吗
于是咱们就假设N=K时成立,别忘了这是你假设的呀!N=K+1可未必就成立!这是需要你证明的(虽然你明知道N=K+1也成立,但这是因为题目让你证明,所以你才知道它是成立的,为什么成立?就是你要去证明的了).
如果我们假设了N=K时成立,也证明了N=K+1时也成立
由于已经验证过1了,所以K取1是成立的,而我们证明了K+1成立,所以2也成立了.K再取2,是成立的,那么K+1也成立,即3也成立.K再取3,是成立的,所以K+1也成立,即4也成立.这样我们就递推下去了!
你的误解在于假设N=K时成立了,N=K+1时需要你去证明它也成立的
所有的证明题,你都明知道它是成立的,难道你就不去证了吗?