证明:设A为n阶矩阵,A不等于0但A的立方等于0 ,证明A不能相似对角化.

问题描述:

证明:设A为n阶矩阵,A不等于0但A的立方等于0 ,证明A不能相似对角化.
高手些,帮帮忙~~

证明:否则,假设A相似与对角矩阵D,即存在可逆矩阵T使得
A = T逆 *D *T
故 A^3 = T逆 *D^3 *T = 0
得:D^3 = 0
又D为对角矩阵,易知D =0
从而 A = 0
矛盾