设f(x)=2x²+1,pq>0,p+q=1,求证对任意实数ab恒有pf(a)+qf(b)≧f(pa+qb)

问题描述:

设f(x)=2x²+1,pq>0,p+q=1,求证对任意实数ab恒有pf(a)+qf(b)≧f(pa+qb)

思路分析:通过作差变形得到2p(1-p)a2+2q(1-q)b2-4pqab+p+q-1,通过讨论,判断符号,发现证明思路,用综合法去证.
证明:考虑原式两边的差.
pf(a)+qf(b)-f(pa+qb)
=p(2a²+1)+q(2b²+1)-[2(pa+qb)²+1]
=2p(1-p)a²+2q(1-q)b²-4pqab+p+q-1.①
∵p+q=1,pq>0,
∴①式=2pqa²+2pqb²-4pqab
=2pq(a-b)²≥0.
即原式成立.
证法二
f(x)=2x²+1,f'(x)=4x,f''(x)=4>0
∴f(x)为一严格凸函数,根据詹森不等式,对任何a,b∈(-∞,+∞),恒有
f(pa+qb)≤pf(a)+qf(b) (pq>0,p+q=1)
∴pf(a)+qf(b)≥f(pa+qb)