求证(b,c,d)a+(c,a,d)b+(a,b,d)c+(b,a,c)d=0 a,b,c,d皆为向量>
问题描述:
求证(b,c,d)a+(c,a,d)b+(a,b,d)c+(b,a,c)d=0 a,b,c,d皆为向量>
答
你说的(b,c,d)是混合积,即先做叉乘,再做点乘混合积的性质是:三个向量轮换次序,混合积不变.比如(b,c,d)=(d,b,c)而其中两个向量交换次序,混合积变号,比如(b,c,d)=-(c,b,d)所以(b,c,d)a+(c,a,d)b+(a,b,d)c+(b,a,c)d=(b...