抽象代数中的一个定理:群G的全体中心元素作成的集合C(G)是G的一个子群.证:因为e∈C(G), 故C(G)非空,又设a,b∈C(G),则对G中任意元素x都有ax=xa, bx=xb,从而又有b^(-1) x = x b^(-1), //////////////////不懂这步//////////////////////////于是有(ab^(-1)) x = a(b^(-1)x) = a(xb(-1)) = (ax)b^(-1) = (xa)b^(-1) = x(ab^(-1)) ,故ab^(-1)∈C(G), 从而C(G)

问题描述:

抽象代数中的一个定理:群G的全体中心元素作成的集合C(G)是G的一个子群.
证:因为e∈C(G), 故C(G)非空,又设a,b∈C(G),则对G中任意元素x都有
ax=xa, bx=xb,
从而又有b^(-1) x = x b^(-1), //////////////////不懂这步//////////////////////////
于是有(ab^(-1)) x = a(b^(-1)x) = a(xb(-1)) = (ax)b^(-1) = (xa)b^(-1) = x(ab^(-1)) ,
故ab^(-1)∈C(G), 从而C(G)