如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.(1)求证:AF⊥CD;(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明).
问题描述:
如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点.
(1)求证:AF⊥CD;
(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明).
答
知识点:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
(1)证明:连接AC,AD.
在△ABC和△AED中
,
AB=AE ∠ABC=∠AED BC=ED
∴△ABC≌△AED(SAS).
∴AC=AD.
∴△ACD为等腰三角形.
又∵F是CD中点,
∴AF⊥CD.
(2)AF⊥BE,BE∥CD,连接BE后交AF于点G,△ABG≌△AEG.
答案解析:(1)连接AC,AD,利用SAS证明△ABC≌△AED,运用全等三角形的对应边相等得AC=AD,所以△ACD为等腰三角形,再利用三线合一得AF⊥CD.
(2)连接后得到线段之间的位置或数量关系,角之间的数量关系及三角形全等等知识.
考试点:全等三角形的判定与性质.
知识点:三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.