一个口袋*有10个红、绿两种颜色小球,不放回地每次从口袋中摸出一球,若第三次摸到红球的概率为45,则袋中红球有______个.
问题描述:
一个口袋*有10个红、绿两种颜色小球,不放回地每次从口袋中摸出一球,若第三次摸到红球的概率为
,则袋中红球有______个. 4 5
答
设袋中红球有x个,
∵一个口袋*有10个红、绿两种颜色小球,
∴每次任取一球,记取到红球为事件A,则第一次取到红球的概率为P(A)=
,x 10
第二次取到红球的概率为P(A)=
,x 10
第三次取到红球的概率也为P(A)=
,x 10
又∵第三次摸到红球的概率为
,4 5
∴
=x 10
,解得x=8,4 5
∴袋中红球有8个.
故答案为:8.
答案解析:设袋中红球有x个,每次任取一球,每次取的情形相同,从而得到每一次取到红球的概率都一样,建立等式
=x 10
,求解即可得到袋中红球的个数.4 5
考试点:概率的应用.
知识点:本题主要考查了等可能事件的概率,解题的关键抓住每一次取到红球的概率都一样.属于中档题.