高数一道 麻烦给下过程 设曲面∑为柱面x^2+y^2=1介于平面z=0与z=1部分的外侧,则曲面积分高数一道 麻烦给下过程设曲面∑为柱面x^2+y^2=1介于平面z=0与z=1部分的外侧,则曲面积分∫∫(∑)(x^2+y^2)dxdy=?∫∫(∑)(x^2+y^2)dS=?帮忙解释下有什么区别,答的好可以加分哦那个圆柱的侧面积有办法用积分算么?不然被积函数不是1时怎么积分

问题描述:

高数一道 麻烦给下过程 设曲面∑为柱面x^2+y^2=1介于平面z=0与z=1部分的外侧,则曲面积分
高数一道 麻烦给下过程
设曲面∑为柱面x^2+y^2=1介于平面z=0与z=1部分的外侧,则曲面积分∫∫(∑)(x^2+y^2)dxdy=?
∫∫(∑)(x^2+y^2)dS=?
帮忙解释下有什么区别,答的好可以加分哦
那个圆柱的侧面积有办法用积分算么?
不然被积函数不是1时怎么积分