已知关于x y的方程组x+y=3,ax+by=4与ax-2by=22,x-y=7同解,求3a-2b的值
问题描述:
已知关于x y的方程组x+y=3,ax+by=4与ax-2by=22,x-y=7同解,求3a-2b的值
答
方程组同解 则联合 x+y=3 求得 x=5
x-y=7 y=-2
带入含有a,b的方程 得 5a-2b=4 ①
5a+4b=22 ②
②-① 得到 6b=18
b=3
代入原方程 得 a=5
∴3a-2b=6-6=0
答
因为关于x y的方程组x+y=3,ax+by=4与ax-2by=22,x-y=7同解,它们的解即为方程组x+y=3,x-y=7的解,解得x=5,y=-2,所以有
5a-2b=4,5a+4b=22 ,解得
a=2,b=3
所以
3a-2b
=3×2-2×3
=0
答
x+y=3①
x-y=7②
①+②2x=10
x=5
y=2
带入ax+by=4-------5a+2b=4③
ax-2by=22----------5a-4b=22④
③*2+④
15a=30
a=2
b=-3
∴3a-2b=6-(-6)=12