A为3阶实对称矩阵,且满足条件A^2+A=0,已知A的秩r(A)=2,问:k为何值时,A+kE为正定矩阵
问题描述:
A为3阶实对称矩阵,且满足条件A^2+A=0,已知A的秩r(A)=2,问:k为何值时,A+kE为正定矩阵
答
k>1就行了 你可以把A看做diag(-1,-1,0) 其实相似变换下是不影响的 因为是对称阵总能对角化
A为3阶实对称矩阵,且满足条件A^2+A=0,已知A的秩r(A)=2,问:k为何值时,A+kE为正定矩阵
k>1就行了 你可以把A看做diag(-1,-1,0) 其实相似变换下是不影响的 因为是对称阵总能对角化