已知函数f(x)是定义在(0,正无穷大)上的,当x>1时,f(x)>0且f(xy)=f(x)+f(y).问:(1)求f(1)(2)证明f(x)在定义域上是增函数(3)如果f(1/3)=-1,解不等式f(x)-f(1/x-2)>=2
问题描述:
已知函数f(x)是定义在(0,正无穷大)上的,当x>1时,f(x)>0且f(xy)=f(x)+f(y).
问:(1)求f(1)
(2)证明f(x)在定义域上是增函数
(3)如果f(1/3)=-1,解不等式f(x)-f(1/x-2)>=2
答
(1) y=1时 f(x)=f(x)+f(1) f(1)=0(2) 设x1>x2 则x1/x2>1因当x>1时,f(x)>0所以f(x1/x2)>0f(x1)=f(x2*x1/x2)=f(x2)+f(x1/x2)所以f(x1)-f(x2)=f(x1/x2)>0即f(x1)>f(x2)故 f(x)在定义域上是增函数(3) 当y=1/x时 ...