已知log2x+logx8=4,求x

问题描述:

已知log2x+logx8=4,求x

2楼3楼的解答都有问题。数算错了!

换底,log2,
x1=2;x2=8

楼主你这题目有歧义啊!你看大家理解的都不一样,你能把题写清楚些么?

2或8
画图?试算?看出来的!
把1和16代进去能算出4来?!

换底:
logx^8=(log2^8)/log2^x=3/log2^x
原方程变为:
log2^x+3/log2^x=4
(log2^x)^2-4log2^x+3=0
(log2^x-1)(log2^x-3)=0
log2^x=1或log2^x=3
故x=1或x=8

log2x+logx8=4
log2x+3logx2=4
log2x+3/log2x=4
令log2x=t
t^2-4t+3=0
t1=1,t2=4
log2x=1或log2x=4
x=2或16

log2x+logx8=4
log2x+3logx2=4
log2x=t
t+3/t=4
解得t=1或t=3
所以x=2或x=8