如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•tanB=( ) A.2 B.3 C.4 D.5
问题描述:
如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则tanC•tanB=( )
A. 2
B. 3
C. 4
D. 5
答
连接BD、CD,由圆周角定理可知∠B=∠ADC,∠C=∠ADB,
∴△ABE∽△CDE,△ACE∽△BDE,
∴
=AB CD
=BE DE
,AE CE
=AC BD
=CE DE
,AE BE
由AD为直径可知∠DBA=∠DCA=90°,
∵DE=2,OE=3,
∴AO=OD=OE+ED=5,AE=8,
tanC•tanB=tan∠ADB•tan∠ADC=
•AB BD
=AC CD
•BE DE
=CE DE
•AB CD
=AC BD
•AE CE
=CE DE
=AE DE
=4.8 2
故选C.