已知x、y是正实数,且2x+5y=20 1)求u=lgx+lgy的最大值 2)求1/x+1/y的最大值
问题描述:
已知x、y是正实数,且2x+5y=20 1)求u=lgx+lgy的最大值 2)求1/x+1/y的最大值
答
2x+5y=20 ≥2√(2x*5y)=2√(10xy)
所以√(xy)≤√10
所以xy≤10
(1)u=lgx+lgy=lg(xy)≤lg10=1
所以u=lgx+lgy的最大值是1