已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于点Q.下面给出了三种情况(如图①,②,③),先用量角器分别测量∠BQM的大小,然后猜测∠BQM是否为定值并利用其中一图证明你的结论.

问题描述:

已知△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,直线BN与AM相交于点Q.下面给出了三种情况(如图①,②,③),先用量角器分别测量∠BQM的大小,然后猜测∠BQM是否为定值并利用其中一图证明你的结论.

∠BQM为定值.理由:如图①,∵△ABC是等边三角形,∴∠ABC=∠C=60°,AB=BC∵BM=CN∴△ABM≌△BCN(SAS)∴∠BAM=∠CBN(全等三角形的对应角相等),∴∠BQM=∠BAQ+∠ABQ=∠CBQ+∠ABQ=∠ABC=60°即∠BQM为定值.图...
答案解析:由等边三角形ABC的性质,可知∠ABC=∠C=60°,AB=BC,又已知BM=CN,所以△ABM≌△BCN,有∠BAM=∠CBN,再根据三角形的外角等于与它不相邻的两内角之和,即∠BQM为定值.
考试点:全等三角形的判定;三角形内角和定理;三角形的外角性质;等边三角形的性质.
知识点:本题重点考查了三角形全等的判定定理,及等边三角形的性质,三角形的内角和外角的关系.是一道基础题.